Faraday Discussions

Cite this: DOI: 10.1039/c6fd00215c

PAPER

View Article Online View Journal

Photocatalytic CO₂ reduction using water as an electron donor by a powdered Z-scheme system consisting of metal sulfide and an RGO-TiO₂ composite[†]

Tomoaki Takayama,^a Ko Sato,^a Takehiro Fujimura,^a Yuki Kojima,^a Akihide Iwase^{ab} and Akihiko Kudo^{*ab}

Received 10th October 2016, Accepted 20th October 2016 DOI: 10.1039/c6fd00215c

CuGaS₂, (AgInS₂)_x–(ZnS)_{2–2x}, Ag₂ZnGeS₄, Ni- or Pb-doped ZnS, (ZnS)_{0.9}–(CuCl)_{0.1}, and ZnGa_{0.5}In_{1.5}S₄ showed activities for CO₂ reduction to form CO and/or HCOOH in an aqueous solution containing K₂SO₃ and Na₂S as electron donors under visible light irradiation. Among them, CuGaS₂ and Ni-doped ZnS photocatalysts showed relatively high activities for CO and HCOOH formation, respectively. CuGaS₂ was applied in a powdered *Z*-scheme system combining with reduced graphene oxide (RGO)-incorporated TiO₂ as an O₂-evolving photocatalyst. The powdered *Z*-scheme system produced CO from CO₂ in addition to H₂ and O₂ due to water splitting. Oxygen evolution with an almost stoichiometric amount indicates that water was consumed as an electron donor in the *Z*-schematic CO₂ reduction. Thus, we successfully demonstrated CO₂ reduction of artificial photosynthesis using a simple *Z*-scheme system in which two kinds of photocatalyst powders (CuGaS₂ and an RGO–TiO₂ composite) were only dispersed in water under 1 atm of CO₂.

Introduction

Photocatalytic CO_2 reduction using water as an electron donor can be called artificial photosynthesis, converting photon energy to chemical energy with a positive change in the Gibbs free energy (an uphill reaction). The reaction also contributes to CO_2 fixation to produce raw materials such as CO for C1 chemistry. A powder-based photocatalyst system has an advantage in a practical large-scale application because of its simplicity. CO_2 reduction over various powdered photocatalysts has been investigated.¹⁻⁷ In photocatalytic CO_2 reduction,

^bPhotocatalysis International Research Center, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan

† Electronic supplementary information (ESI) available. See DOI: 10.1039/c6fd00215c

^aDepartment of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan. E-mail: a-kudo@rs.kagu.tus.ac.jp; Fax: +81-3-5261-4631

Faraday Discussions

stoichiometric O₂ evolution as an oxidation product of water is necessary to show that the water is consumed as an electron source. Sayama *et al.* reported that a pristine ZrO₂ photocatalyst reduced CO₂ to CO with stoichiometric O₂ evolution and that the loading of a Cu cocatalyst on the ZrO₂ improved the selectivity of the CO formation.⁸ We also reported that Ag-loaded BaLa₄Ti₄O₁₅ (ref. 9) (denoted as Ag/BaLa₄Ti₄O₁₅), Ag/NaTaO₃:Ba,¹⁰ and Ag/KCaSrTa₅O₁₅ (ref. 11 and 12) showed activity for CO₂ reduction using water as an electron donor. In our works, metallic Ag nanoparticles were found to be the most efficient cocatalyst for photocatalytic CO₂ reduction to form CO at the present stage. Moreover, Teramura and Yoshida *et al.* also applied a Ag cocatalyst to CO₂ reduction using metal oxide photocatalysts which were active for water splitting, resulting in that Ag/La₂Ti₂O₇,¹³ Ag/ CaTiO₃,¹⁴ Ag/ZnTa₂O₆,¹⁵ Ag/Ta₂O₅ modified with SrO,¹⁶ and Ag/ZnGa₂O₄/Ga₂O₃ (ref. 17) were found to be active photocatalysts for CO₂ reduction.

Many metal sulfide photocatalysts show activity for hydrogen evolution under visible light irradiation in the presence of a sacrificial electron donor.18,19 CdS nanoparticles of a well-known efficient photocatalyst for hydrogen evolution^{20,21} are also active for CO₂ reduction.²² Thus, metal sulfides have the possibility to reduce CO₂ under visible light irradiation in the presence of electron donors. However, self-oxidation by photogenerated holes, photocorrosion, still remains as an issue for metal sulfides in CO₂ reduction using water as an electron donor. Recently, we have successfully applied metal sulfides as an H₂-evolving photocatalyst in a Z-scheme system for water splitting into H2 and O2 upon employing a reduced graphene oxide (RGO) as a solid-state electron mediator and Cocomplexes as ionic electron mediators.^{23,24} The system using RGO as the solidstate electron mediator can be successfully applied to powdered Z-schematic CO2 reduction with certain O2 evolution upon combining CuGaS2 as a CO2reducing photocatalyst, with an RGO-CoOx/BiVO4 composite as an O2-evolving photocatalyst.²⁵ Although CO₂ reduction proceeds even under visible light irradiation, the number of combinations of metal sulfide photocatalysts and CoO_r/ BiVO₄ for the Z-scheme system is limited at the present stage because of the relatively low reduction power of BiVO₄, for example, compared with TiO₂. Consequently, various metal sulfides such as CuGaS₂, CuInS₂, Cu₂ZnGeS₄, and Cu₂ZnSnS₄ can be used as an H₂-evolving photocatalyst when RGO-TiO₂ is used as an O2-evolving photocatalyst.24 Therefore, TiO2 is a suitable O2-evolving photocatalyst for surveying metal sulfide-based Z-scheme photocatalyst systems employing an RGO solid-state electron mediator. Activity for Z-schematic water splitting strongly depends on the reaction conditions such as the amounts of H₂and O2-evolving photocatalysts and electron mediator used, and pH values of the reactant solution.^{26,27} Accordingly, it is also important to clarify the factors affecting activity for Z-schematic CO2 reduction to construct highly efficient systems.

In the present study, we developed metal sulfide photocatalysts that were active for CO_2 reduction under visible light irradiation in an aqueous solution containing sacrificial reagents based on our library of metal sulfide photocatalysts for solar hydrogen production.^{18,28-37} The developed metal sulfides were applied to a powdered *Z*-scheme system to achieve CO_2 reduction using water as an electron donor upon combining with RGO-incorporated TiO₂ as an O₂-evolving photocatalyst.

Experimental

Preparation of metal sulfide photocatalysts

CuGaS₂,³⁵ Cu₂ZnGeS₄,³² CuGa₅S₈,³⁴ CuGa₂In₃S₈,³³ AgGaS₂,^{31,36} (AgInS₂)_x–(ZnS)_{2-2x} (x = 0.1 and 0.22),³⁰ Ag₂ZnGeS₄,³² Ni- or Pb-doped ZnS,^{28,29} Zn_{1-x}Cu_xGa₂S_{4-x/2},³⁴ Cu₃NbS₄,³⁷ Cu₃TaS₄,³⁷ (ZnS)_{0.9}–(CuCl)_{0.1},³⁷ BaLaCuS₃,³⁷ ZnIn₂S₄,³⁷ ZnGa_{0.5}In_{1.5}S₄,³⁷ and MnGaInS₄ (ref. 37) were prepared by solid-state reaction and precipitation methods according to previous reports. Obtained samples were identified by X-ray diffraction (Rigaku; MiniFlex, Cu Kα). Diffuse reflectance spectra were obtained by a UV-vis-NIR spectrometer (JASCO, V-570) equipped with an integrating sphere and were converted to absorbance by the Kubelka–Munk method.

Preparation of an RGO-TiO₂ composite

An RGO-incorporated TiO₂ photocatalyst (denoted as RGO-TiO₂ composite) was prepared by photocatalytic reduction of graphene oxide using TiO₂ according to a previous report.²⁴ The powders of GO prepared by Hummers' method³⁸ and rutile TiO₂ (Kojundo; 99.99%) were dispersed in an aqueous methanol (Kanto; 99.8%) solution (50 vol%). The suspension was irradiated with UV light from a 300 W Xe-lamp (PerkinElmer; CERMAX PE300BF) under 1 atm of N₂ atmosphere to obtain an RGO-TiO₂ composite. The methanol was carefully removed by washing with water. The RGO-TiO₂ composite was collected by filtration and was dried at room temperature in air.

Sacrificial CO₂ reduction

CO₂ reduction using sacrificial reagents was conducted using a batch-type topirradiation cell with a Pyrex window under 1 atm of CO₂ gas (99.995%). Metal sulfide photocatalysts were dispersed in an aqueous solution containing sacrificial reagents of 0.05–0.1 mol L⁻¹ Na₂S (Kanto; 98%) and 0.1 mol L⁻¹ K₂SO₃ (Kanto; 95%). A 300 W Xe-lamp was employed as a light source. The wavelength of the irradiation light was controlled to visible light using a cut-off filter ($\lambda > 420$ nm). Products in gas and liquid phases were analyzed using a gas-chromatograph (Shimadzu; GC-8A, MS-5A, TCD, Ar carrier for H₂ and O₂; GC-8A, MS-13X, FID with a methanizer, N₂ carrier for CO) and a high performance liquid chromatograph (Shimadzu), respectively.

Z-schematic CO₂ reduction

Z-schematic CO₂ reduction was conducted using a gas-flow system with a topirradiation cell with a Pyrex window. CuGaS₂ and an RGO–TiO₂ composite were dispersed in 120 mL of water without any sacrificial reagents. CO₂ gas was bubbled into the suspension at about 20 mL min⁻¹ flow rate. The light source was a 300 W Xe-lamp without any cut-off filters ($\lambda > 330$ nm). Products in gas and liquid phases were analyzed using a gas-chromatograph and an ionchromatograph, respectively. An isotope experiment for CO₂ reduction was conducted using ¹³CO₂ (99.5 atom%). The obtained CO was analyzed using a GC-MS (Shimadzu; GCMS-QP2010 Plus, RESTEK; RT-Msieve 5A).

Results and discussion

Sacrificial CO₂ reduction over metal sulfide photocatalysts under visible light irradiation

The CO₂ reduction abilities of metal sulfide photocatalysts showing activity for sacrificial H₂ production²⁸⁻³⁷ were evaluated under visible light irradiation in an aqueous solution containing Na₂S and/or K₂SO₃ as electron donors in the absence of cocatalysts, as shown in Table 1. When CuGaS₂, $(AgInS_2)_x$ - $(ZnS)_{2-2x}$, Ag₂ZnGeS₄, Ni- or Pb-doped ZnS, ZnGa_{0.5}In_{1.5}S₄, and $(ZnS)_{0.9}$ - $(CuCl)_{0.1}$ were used, CO and/or HCOOH were obtained as reduction products of CO₂ in addition to H₂. Others did not show any activities for CO₂ reduction under the present reaction conditions.

 $CuGaS_2$ was the most active photocatalyst for CO formation (Table 1, entry 1). CO and H₂ continuously evolved under visible light irradiation over $CuGaS_2$ in the presence of K₂SO₃, as shown in Fig. 1. The turnover number of reacted electrons

Entry	Photocatalyst	BG and EG/eV		Activity/µmol h ⁻¹		
			Electron donor	H_2	СО	нсоон
1	CuGaS ₂	2.3	K_2SO_3	11	0.25	Trace
2	Cu ₂ ZnGeS ₄	2.2	K ₂ SO ₃	Trace	0	0
3	Cu ₂ ZnGeS ₄	2.2	Na ₂ S	0.1	0	0
4	CuGa ₅ S ₈	2.5	K ₂ SO ₃	2.5	0	0
5	CuGa ₂ In ₃ S ₈	1.9	Na ₂ S	11.2	0	Trace
6	Cu ₃ NbS ₄	2.5	K ₂ SO ₃	0.2	0	0
7	Cu ₃ TaS ₄	2.8	$Na_2S + K_2SO_3$	2.1	0	0
8	AgGaS ₂	2.6	K ₂ SO ₃	18	0	0
9	$(AgInS_2)_{0.22}$ - $(ZnS)_{1.56}$	2.3	K_2SO_3	0.1	0	0
10	$(AgInS_2)_{0.22} - (ZnS)_{1.56}$	2.3	$Na_2S + K_2SO_3$	16	0.01	0
11	$(AgInS_2)_{0,1} - (ZnS)_{1,8}$	2.6	Na ₂ S	23	0.06	0.10
12	$(AgInS_2)_{0,1} - (ZnS)_{1,8}$	2.6	K_2SO_3	0.02	Trace	0
13	Ag ₂ ZnGeS ₄	2.5	Na ₂ S	38	0	0.14
14	Ag_2ZnGeS_4	2.5	K_2SO_3	1	0	0
15	ZnS	3.5	Na ₂ S	Trace	Trace	0
16	ZnS:Ni (0.1%)	2.3	Na ₂ S	22	Trace	4.0
17	ZnS:Pb (1.0%)	2.4	Na ₂ S	47	0.02	0.96
18	(ZnS)0.9-(CuCl)0.1	2.9	$Na_2S + K_2SO_3$	37	Trace	0
19	(ZnS) _{0.9} -(CuCl) _{0.1}	2.9	Na ₂ S	140	0.01	0
20	Cu _{0.045} Zn _{0.955} Ga ₂ S _{3.9775}	2.9	Na ₂ S	0.4	0	0
21	Cu _{0.12} Zn _{0.88} Ga ₂ S _{3.94}	2.8	Na ₂ S	0.4	0	0
22	Cu _{0.15} Zn _{0.85} Ga ₂ S _{3.925}	2.7	Na ₂ S	1	0	0
23	ZnIn ₂ S ₄	2.4	Na ₂ S	2	0	0
24	ZnGa _{0.5} In _{1.5} S ₄	2.7	$Na_2S + K_2SO_3$	2	Trace	0
25	ZnGa _{0.5} In _{1.5} S ₄	2.7	Na ₂ S	14	0.01	0
26	MnGaInS ₄	2.1	Na ₂ S	0.05	0	0
27	BaLaCuS ₂	2.0	Na ₂ S	0.6	Trace	0

Table 1 CO_2 reduction under visible light irradiation on various metal sulfide photocatalysts in the presence of electron donors^{*a*}

^{*a*} Catalyst: 0.2–0.3 g, reactant solution: 120–150 mL of an aqueous solution containing Na₂S (0.05–0.1 mol L⁻¹) or/and K₂SO₃ (0.1 mol L⁻¹) under 1 atm of CO₂, reactor: a batch-type top-irradiation cell made of Pyrex, light source: a 300 W Xe-lamp with a cut-off filter (λ > 420 nm). BG: band gap, EG: energy gap.

Fig. 1 CO₂ reduction over CuGaS₂ from an aqueous solution containing K₂SO₃ as a sacrificial reagent under visible light irradiation. Catalyst: 0.3 g, reactor: a batch-type top-irradiation cell with a Pyrex window, light source: a 300 W Xe-lamp with a cut-off filter (λ > 420 nm), reactant solution: 150 mL of an aqueous solution containing 0.1 mol L⁻¹ K₂SO₃ under 1 atm of CO₂ atmosphere.

used for CO and H_2 formation to S atoms at the surface of CuGaS₂ was calculated to be 32 at 22.5 h. The turnover number larger than unity indicates that this reaction proceeded photocatalytically.

HCOOH was also obtained as a reduction product of CO_2 under visible light irradiation in an aqueous solution containing Na₂S as an electron donor, when an $(AgInS_2)_{0.1}$ - $(ZnS)_{1.8}$ solid solution, Ag_2ZnGeS_4 , and Ni- or Pb-doped ZnS were used, as shown in Table 1. All photocatalysts that produced HCOOH from CO_2 contained Zn as a component. The Ni-doped ZnS photocatalyst was reported to be active for CO_2 reduction to form HCOOCH₃ in methanol as a nonaqueous solution.³⁹ Additionally, it has also been reported that a non-doped ZnS photocatalyst without loading of a cocatalyst is active for CO_2 reduction to form HCOOH in an aqueous solution containing an electron donor under UV light irradiation.⁴⁰

Fig. 2 CO₂ reduction over Ni (0.1%)-doped ZnS from an aqueous solution containing Na₂S as a sacrificial reagent under visible light irradiation. Catalyst: 0.2 g, reactor: a batch-type top-irradiation cell with a Pyrex window, light source: a 300 W Xe-lamp with a cut-off filter (λ > 420 nm), reactant solution: 150 mL of an aqueous solution containing 0.05 mol L⁻¹ Na₂S under 1 atm of CO₂ atmosphere.

Table 2 CO_2 reduction using water as an electron donor and the control experiment onCuGaS2-(RGO-TiO2) of a Z-scheme photocatalyst system^a

	CO ₂ -photocatalyst Metal sulfide	O2-photocatalyst Metal oxide		Activity/µmol h^{-1}			
Entry			Gas	H_2	O_2	CO	e^{-}/h^{+}
1	$CuGaS_2$	RGO-TiO ₂	CO_2	28.8	11.2	0.15	1.29
2	$CuGaS_2$	TiO_2	CO_2	8.4	0	0.02	_
3^b	CuGaS ₂	RGO-TiO ₂	Ar	18.8	4.1	0.05	2.30
4	None	RGO-TiO ₂	CO_2	0.1	0.2	0.02	_
5^{b}	None	RGO-TiO ₂	Ar	0	0	0.01	_
6^b	None	TiO_2	Ar	0	0	0	—

^{*a*} Catalyst: 0.1 g each, reactant solution: 120 mL of water under 1 atm of CO₂ and Ar, reactor: a gas flow system using a top-irradiation cell made of Pyrex, light source: a 300 W Xe-lamp (λ > 330 nm). ^{*b*} pH was adjusted to about 4 with H₂SO₄.

These results suggest that contributions of Zn to the formation of a suitable conduction band and an active site for CO_2 reduction cause the formation of HCOOH. Ni-doped and Pb-doped ZnS, of which the conduction band levels should be similar to that of non-doped ZnS, showed relatively high activities.⁴¹ The Ni-doped ZnS was the most active photocatalyst for HCOOH formation (Table 1, entry 16). HCOOH and H₂ continuously evolved under visible light irradiation in the presence of Na₂S, while CO evolution was negligible, as shown in Fig. 2. The turnover number of reacted electrons used for HCOOH formation of doped Ni atoms in Ni-doped ZnS was calculated to be 71 at 18.5 h. The turnover number larger than unity indicates that the CO_2 reduction to form HCOOH proceeded photocatalytic activity for CO_2 reduction under visible light irradiation (Table 1, entry 15). This indicates that the photocatalytic HCOOH formation from CO_2 proceeded by the photo-excitation of electrons from impurity levels formed with Ni 3d orbitals to a conduction band formed with Zn 4s4p orbitals.²⁸

Fig. 3 CO₂ reduction using water as an electron donor over a Z-schematic photocatalyst system consisting of CuGaS₂ and RGO–TiO₂. Catalyst: 0.1 g each, reactant solution: 120 mL of water under 1 atm of CO₂, reactor: a gas flow system using a top-irradiation cell with a Pyrex window, light source: a 300 W Xe-lamp (λ > 330 nm).

Fig. 4 Reaction scheme of CO_2 reduction on the Z-scheme photocatalyst system consisting of $CuGaS_2$ and $RGO-TiO_2$ using water as an electron donor.

Thus, band engineering including doping of metal ions, formation of solid solutions, and substitution of metal cations is a useful strategy not only for water reduction to form hydrogen, but also for CO_2 reduction to form CO and HCOOH under visible light irradiation.

Z-schematic CO₂ reduction using water as an electron donor

Various metal sulfide photocatalysts for CO_2 reduction under visible light irradiation in the presence of Na_2S and K_2SO_3 as electron donors have been developed in the present study as mentioned above. Among them, $CuGaS_2$ and Nidoped ZnS showed high activities for CO and HCOOH formation, respectively. However, sulfide and/or sulfite ions were used as electron donors for the CO_2 reduction, because the metal sulfides cannot oxidize water to O_2 . We have previously reported a *Z*-scheme photocatalyst system composed of a metal sulfide photocatalyst with a p-type semiconductor character and a reduced graphene oxide (RGO)–TiO₂ and RGO– $CoO_x/BiVO_4$ composites.^{24,25} In this system, electrons are supplied to the metal sulfide photocatalyst from not a sacrificial reagent but by the RGO– TiO_2 and RGO– $CoO_x/BiVO_4$ composites on which electrons are extracted from water accompanied by O_2 evolution. TiO₂ is a suitable O_2 -evolving

Fig. 5 Dependence of photocatalytic activity on the ratio of the amount of CuGaS₂ to that of RGO–TiO₂. Reactant solution: 120 mL of water under 1 atm of CO₂, reactor: a gas flow system using a top-irradiation cell with a Pyrex window, light source: a 300 W Xe-lamp (λ > 330 nm).

Faraday Discussions

photocatalyst for surveying metal sulfide-based Z-scheme photocatalyst systems employing an RGO solid-state electron mediator, because TiO₂ possesses higher reduction power than BiVO₄.^{24,25} Here, the CuGaS₂ photocatalyst possesses a ptype character and CO₂ reduction activity, as shown in Table 1. Therefore, it is expected that a Z-scheme photocatalyst system composed of CuGaS₂ and RGO– TiO₂ is active for CO₂ reduction using water as an electron donor without any sacrificial reagents. Actually, CO₂ reduction to form CO proceeded with water splitting by employing the powdered Z-scheme system composed of CuGaS₂ and RGO–TiO₂ photocatalysts, as shown in Table 2 (entry 1) and Fig. 3. It is noteworthy that O₂ evolution was observed indicating that water was consumed as an electron donor. However, the photocatalytic activity decreased with the reaction time and the ratio of e⁻/h⁺ calculated by the eqn (1) was about 1.3 being beyond unity.

 $e^{-}/h^{+} =$ (the numbers of electrons consumed for H₂ and CO formation)/(the numbers of holes consumed for O₂ formation) (1)

This is due to partial photocorrosion and hydrolysis of the $CuGaS_2$ photocatalyst, and detachment of RGO from TiO_2 as have been discussed in previous paper.²⁴ Therefore, the initial activity in the time course should be an intrinsic ability. The combination of $CuGaS_2$ and TiO_2 without RGO gave small amounts of H₂ and CO formed without O₂ evolution due to photocorrosion (Table 2, entry 2), indicating that RGO was necessary for smooth electron transfer from TiO_2 to $CuGaS_2$ photocatalysts.

¹³CO₂ was employed to see the carbon source of produced CO. ¹²CO and ¹³CO were unexpectedly detected as a reduction product even in an atmosphere of 13 CO₂ (Fig. S1[†]). The 12 CO is thought to come from RGO oxidation by the TiO₂ photocatalyst judging from control experiments as shown in Table 2 (entries 3-6). Even under Ar condition, a small amount of CO was detected with water splitting (Table 2, entry 3). The rate of CO evolution under Ar was smaller than that under CO2. Small amounts of CO were detected only for RGO-TiO2 under Ar and CO2, but not for TiO₂ under Ar (Table 2, entries 4–6). Although RGO is partially oxidized to form CO by the strong oxidation power of the TiO₂ photocatalyst, CO was also produced from CO2 molecules over CuGaS2 as a CO2-reducing photocatalyst in the present Z-scheme system. These results derive the scheme as shown in Fig. 4. Zschematic CO₂ reduction proceeds by electron transfer to CuGaS₂ of a CO₂reducing photocatalyst from TiO₂ of an O₂-evolving photocatalyst through RGO of a solid-state electron mediator using water as an electron donor accompanied by O2 evolution as a main reaction. However, a part of photogenerated holes in TiO2 oxidizes RGO to form CO.

Here, cocatalysts usually enhance photocatalytic reactions. For instance, an Ag cocatalyst is highly active for CO_2 reduction to CO over metal oxide photocatalysts with wide band gaps.⁹⁻¹⁷ Therefore, Pt, Ru, Rh, and Ag-cocatalyst materials were loaded on $CuGaS_2$ (Table S1,† entries 2–5). Unfortunately, no effective cocatalysts were found for CO_2 reduction in the present *Z*-scheme system. The Ag cocatalyst was not effective, probably due to sulfurization of the Ag surface. When Pt and Ru were loaded, water splitting was enhanced²⁴ even under CO_2 whereas CO_2 reduction was suppressed.

Paper

In a *Z*-scheme system, the ratio of reduction- and oxidation-photocatalysts is an important factor that affects the photocatalytic activity. The photocatalytic activity of the present *Z*-scheme system also depended on the ratio of the amount of CuGaS₂ to that of RGO–TiO₂, as shown in Fig. 5. The ratio affects the frequency of collision between particles of CuGaS₂ and RGO–TiO₂, and photon absorption by each particle. CuGaS₂ can absorb a wider spectrum including visible light than RGO–TiO₂ (Fig. S2†). When the ratio of CuGaS₂/RGO–TiO₂ is 2, the ratio of e^-/h^+ largely deviates from unity. This is probably due to photocorrosion of CuGaS₂. CuGaS₂ mainly absorbs incident light, and hence shields incident light toward RGO–TiO₂, resulting in inefficient electron supply from RGO–TiO₂ to CuGaS₂. When the ratios were 1 and 0.5, the activities of water splitting and CO₂ reduction became higher than those in the case of 2 of the ratio. Thus, sufficient electron supply from an O₂-evolving photocatalyst is important for the *Z*-scheme system using a photocorrosive metal sulfide photocatalyst.

Conclusions

A survey of metal sulfide photocatalysts revealed that cocatalyst-unloaded $CuGaS_2$, $(AgInS_2)_x$ - $(ZnS)_{2-2x}$, Ag_2ZnGeS_4 , Ni- or Pb-doped ZnS, $(ZnS)_{0.9}$ - $(CuCl)_{0,1}$, and $ZnGa_{0,5}In_{1,5}S_4$ have abilities for CO_2 reduction under visible light irradiation in aqueous solutions containing electron donors. Among them, CuGaS₂ was the most active photocatalyst for CO formation. Ni-doped ZnS was the most active photocatalyst for HCOOH production. This is due to the character of Zn contributing to the formation of a suitable conduction band and the active site for CO₂ reduction as seen for a non-doped ZnS photocatalyst. The CO₂ reduction using sacrificial reagents is regarded as a half reaction of CO₂ reduction using water as an electron donor. When the half reaction system was combined with an RGO-TiO₂ composite as an O₂-evolving system, Z-schematic CO₂ reduction proceeded using water as an electron donor accompanied by O2 evolution in a simple suspension system. A tracer experiment using ¹³CO₂ revealed that a part of the CO was formed by oxidation of RGO by a TiO₂ photocatalyst with strong oxidation power. A Z-scheme photocatalyst system is able to employ various kinds of powdered photocatalysts including metal sulfide photocatalysts with visible light response. The present work shows the possibility to develop efficient CO_2 reduction systems for artificial photosynthesis using powdered photocatalyst materials with water as an electron donor.

Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers JP24107001, JP24107004 in Scientific Research on Innovative Areas "All Nippon Artificial Photosynthesis Project for Living Earth (AnApple)".

References

- 1 S. C. Roy, O. K. Varghese, M. Paulose and C. A. Grimes, *ACS Nano*, 2010, 4, 1259.
- 2 S. N. Habisreutinger, L. Schmidt-Mende and J. K. Stolarczyk, *Angew. Chem., Int. Ed.*, 2013, **52**, 7372.

- 3 M. Tahir and N. S. Amin, Energy Convers. Manage., 2013, 76, 194.
- 4 S. Navalón, A. Dhakshinamoorthy, M. Álvaro and H. Garcia, *ChemSusChem*, 2013, 6, 562.
- 5 J. Mao, K. Li and T. Peng, Catal. Sci. Technol., 2013, 3, 2481.
- 6 K. Li, X. An, K. H. Park, M. Khraisheh and J. Tang, Catal. Today, 2014, 224, 3.
- 7 J. L. White, M. F. Baruch, J. E. Pander III, Y. Hu, I. C. Fortmeyer, J. E. Park, T. Zhang, K. Liao, J. Gu, Y. Yan, T. W. Shaw, E. Abelev and A. B. Bocarsly, *Chem. Rev.*, 2015, **115**, 12888.
- 8 K. Sayama and H. Arakawa, J. Phys. Chem., 1993, 97, 531.
- 9 K. Iizuka, T. Wato, Y. Miseki, K. Saito and A. Kudo, *J. Am. Chem. Soc.*, 2011, **133**, 20863.
- 10 H. Nakanishi, K. Iizuka, T. Takayama, A. Iwase and A. Kudo, *ChemSusChem*, 2017, **10**, 112.
- 11 T. Takayama, K. Tanabe, K. Saito, A. Iwase and A. Kudo, *Phys. Chem. Chem. Phys.*, 2014, **16**, 24417.
- 12 T. Takayama, A. Iwase and A. Kudo, Bull. Chem. Soc. Jpn., 2015, 88, 538.
- 13 Z. Wang, K. Teramura, S. Hosokawa and T. Tanaka, *Appl. Catal., B*, 2015, **163**, 241.
- 14 H. Yoshida, L. Zhang, M. Sato, T. Morikawa, T. Kajino, T. Sekito, S. Matsumoto and H. Hirata, *Catal. Today*, 2015, **251**, 132.
- 15 S. Iguchi, K. Teramura, S. Hosokawa and T. Tanaka, *Catal. Sci. Technol.*, 2016, 6, 4978.
- 16 K. Teramura, H. Tatsumi, Z. Wang, S. Hosokawa and T. Tanaka, *Bull. Chem. Soc. Jpn.*, 2015, **88**, 431.
- 17 Z. Wang, K. Teramura, Z. Huang, S. Hosokawa, Y. Sakata and T. Tanaka, *Catal. Sci. Technol.*, 2016, **6**, 1025.
- 18 A. Kudo and Y. Miseki, Chem. Soc. Rev., 2009, 38, 253.
- 19 K. Zhang and L. Guo, Catal. Sci. Technol., 2013, 3, 1672.
- 20 M. Matsumura, Y. Saho and H. Tsubomura, J. Phys. Chem., 1983, 87, 3807.
- 21 A. W. H. Mau, C. B. Huang, N. Kakuta, A. J. Bard, A. Campion, M. A. Fox, J. M. White and S. E. Webber, *J. Am. Chem. Soc.*, 1984, **106**, 6537.
- 22 M. Kanemoto, K. Ishihara, Y. Wada, T. Sakata, H. Mori and S. Yanagida, *Chem. Lett.*, 1992, 835.
- 23 T. Kato, Y. Hakari, S. Ikeda, Q. Jia, A. Iwase and A. Kudo, *J. Phys. Chem. Lett.*, 2015, 6, 1042.
- 24 K. Iwashina, A. Iwase, Y. H. Ng, R. Amal and A. Kudo, *J. Am. Chem. Soc.*, 2015, 137, 604.
- 25 A. Iwase, S. Yoshino, T. Takayama, Y. H. Ng, R. Amal and A. Kudo, *J. Am. Chem. Soc.*, 2016, **138**, 10260.
- 26 Y. Sasaki, H. Nemoto, K. Saito and A. Kudo, J. Phys. Chem. C, 2009, 113, 17536.
- 27 Y. Sasaki, H. Kato and A. Kudo, J. Am. Chem. Soc., 2013, 135, 5441.
- 28 A. Kudo and M. Sekizawa, Chem. Commun., 2000, 1371.
- 29 I. Tsuji and A. Kudo, J. Photochem. Photobiol., A, 2003, 156, 249.
- 30 I. Tsuji, H. Kato, H. Kobayashi and A. Kudo, J. Am. Chem. Soc., 2004, 126, 13406.
- 31 A. Kudo, Int. J. Hydrogen Energy, 2006, 31, 197.
- 32 I. Tsuji, Y. Shimodaira, H. Kato, H. Kobayashi and A. Kudo, *Chem. Mater.*, 2010, **22**, 1402.
- 33 H. Kaga, K. Saito and A. Kudo, Chem. Commun., 2010, 46, 3779.

Paper

- 34 H. Kaga and A. Kudo, J. Catal., 2014, 310, 31.
- 35 H. Kaga, Y. Tsutsui, A. Nagane, A. Iwase and A. Kudo, *J. Mater. Chem. A*, 2015, 3, 21815.
- 36 K. Yamato, A. Iwase and A. Kudo, ChemSusChem, 2015, 8, 2902.
- 37 T. Takayama, I. Tsuji, N. Aono, M. Harada, T. Okuda, A. Iwase, H. Kato and A. Kudo, *Chem. Lett.*, 2017, DOI: 10.1246/cl.161192.
- 38 W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 1958, 80, 1339.
- 39 J. Chen, F. Xin, S. Qin and X. Yin, Chem. Eng. J., 2013, 230, 506.
- 40 M. Kanemoto, T. Shiragami, C. Pac and S. Yanagida, *J. Phys. Chem.*, 1992, **96**, 3521.
- 41 T. Fujimura, H. Kato and A. Kudo, 98th CATSJ Meeting Abstract, 2006, 4F12.