NJC

View Article Online

PAPER

Cite this: New J. Chem., 2015, 39, 9918

Received (in Montpellier, France) 14th July 2015, Accepted 13th October 2015

DOI: 10.1039/c5nj01836f

www.rsc.org/nic

Selective construction of junctions on different facets of BiVO₄ for enhancing photo-activity

Peng Wang, ab Jin You Zheng, Dun Zhang and Young Soo Kang*a

A novel ternary $Ag/BiVO_4/Co_3O_4$ hybrid photocatalyst was designed by constructing a metal-semiconductor junction and a p-n junction on electron-rich (010) facets and hole-rich (110) facets of $BiVO_4$, respectively. The $Ag/BiVO_4/Co_3O_4$ hybrid photocatalyst exhibits enhanced photocatalytic activity for rhodamine B degradation, which is over 8 times that of bare $BiVO_4$ under simulated solar light. It was proven that the combination of a metal-semiconductor junction and a p-n junction further promotes the charge transferring across the interface, and results in an additional effect of two single junctions for improving photo-activity. This research provides a deep insight about the co-working mechanism between the two heterojunctions, and it will propose a new concept for designing a highly efficient photo-catalyst system.

1. Introduction

Water purification is quite important for human health.^{1–3} Over recent decades, numerous effective methods have been widely used for water purification, including chlorination, ozonization, UV radiation and so forth.^{4–7} However, these treatments have some disadvantages, such as the production of toxic by-products, transport and storage of chemicals as well as high energy needs.⁷ Photocatalysis has been proven to be a promising process for water purification due to its advantages such as non-selective, and no need of additional chemicals.^{8–11}

Bismuth vanadate (BiVO₄) has received much attention among the visible light-active photo-catalysts. $^{12-14}$ BiVO₄ has three main crystal structures, tetragonal zircon, tetragonal scheelite and monoclinic scheelite. The monoclinic scheelite phase of BiVO₄ has a band gap of 2.4 eV and has been demonstrated to exhibit much higher photo-catalytic activity in visible light than the other two phases. 15 However, the photo-activity of BiVO₄ alone is not very impressive because of the relatively fast recombination of photogenerated electron–hole pairs. 16

Designing and constructing heterojunctions, such as p-n junctions, metal-semiconductor (m-s) junctions and so forth, is an effective way to improve the electron-hole separation.¹⁷ Many researchers have reported the advantages of heterojunctions in enhancing the activity of a photocatalyst.^{17–20} Recently, multi-junction photocatalyst systems were designed to further improve photocatalytic activity, such as Ag/Ag₃PO₄/BiPO₄ (ref. 21)

and $\text{Cu-TiO}_2\text{-Cu}_2\text{O}^{22}$ hybrid catalysts. In the present research, the band position and the Fermi level were firstly taken into consideration for selecting interfacial junction materials, since the matching of band energy between two components is one of the most important conditions for designing efficient junctions. Actually, the distribution of holes and electrons over the semi-conductor surface under irradiation is an essential factor that should be considered for selecting the construction location of junctions. However, junctions were usually constructed over the semi-conductor surface randomly without considering the location in the present research. In this case, the construction of junctions can hardly achieve optimal hole–electron separation efficiency, and it is also hard to anticipate the co-working mechanism between different junctions for electron–hole separation.

Recently, it was reported that photo-generated electrons and holes can be spatially separated onto different facets of BiVO₄.²³ Accordingly, we can selectively construct suitable junctions on different facets of BiVO4 for improving photoactivity based on the charge separation among different facets. The semiconductor p-n junction is an effective architecture for the highly efficient charge collection and separation. BiVO₄ is an n-type semiconductor, so it is reasonable to design p-n junctions on hole-rich facets of BiVO₄ to facilitate the transfer of holes to the p-type semiconductor, and thus avoid the recombination of holes with electrons in BiVO₄. To deposit noble metal nanoparticles on the surface of the semiconductor is another effective method to create a space-charge separation region. These metal nanoparticles can act as a sink for photo-induced electrons, thereby facilitating the charge separation and enhancing the photocatalytic activity. For their high activity as the sink for photo-induced electrons, a metal-semiconductor (m-s) junction

^a Korea Center for Artificial Photosynthesis and Department of Chemistry, Sogang University, Seoul 121-742, Korea. E-mail: yskang@sogang.ac.kr

^b Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Naihai Road, Qingdao 266071, China

NJC Paper

can be constructed over electron-rich facets of BiVO₄ to improve its photoactivity. So far, various noble metals such as platinum, aurum, and silver have been deposited on semiconductors to improve the photoactivity. Among them, silver is an attractive one because of its low cost and as well as its effective electron trapping ability.24

In this research, silver and cobalt oxide were selectively deposited onto electron-rich facets and hole-rich facets of BiVO4 crystals, thereby constructing the metal-semiconductor junction and the p-n junction over BiVO₄. Rhodamine B degradation was utilized as a probe to evaluate the photo-activity of as-fabricated photocatalysts. It was demonstrated that the photoactivity of BiVO4 with the metal-semiconductor junction and the p-n junction selectively constructed on {010} and {110} facets of BiVO₄ crystals was dramatically enhanced compared with the pure BiVO₄, and the combination of the two junctions results in the additional effect of two single junctions for improving photo-activity. This work will give a deep insight to understand the co-working mechanism of multijunctions in a hybrid photocatalyst system, and it will provide a general concept for constructing highly effective photocatalysts.

2. Experimental section

2.1 Synthesis of photocatalysts

2.1.1 Synthesis of BiVO₄. A BiVO₄ crystal sample was synthesized by a hydrothermal method. In a typical procedure, the precursors Bi(NO₃)₃·5H₂O (50 mmol) and NH₄VO₃ (50 mmol) were dissolved in 10 mL of 4.0 M HNO3 solution and 10 mL 2.0 M NaOH solution, respectively. These two solutions were mixed slowly to form a yellowish suspension, and the pH value of the solution was then adjusted to be 1.0 with sodium hydroxide under stirring. After stirring for 0.5 h, the suspension was transferred into a Teflon-lined stainless steel autoclave with a capacity of 25 mL, and reacted at 150 °C for 12 h. After hydrothermal reaction, the precipitate was washed and centrifuged in de-ionized water three times, and finally dried overnight at 60 °C.

2.1.2 Facet-selective photo-deposition of silver and/or cobalt oxide. For the facet-selective photo-deposition on BiVO₄, similar procedures were performed for single silver reductive-deposition, single cobalt oxide oxidative-deposition, and simultaneous silver reductive-deposition and cobalt oxide oxidative-deposition. Typically, 0.1 g of BiVO₄ powder was dispersed into 50 mL of aqueous solution with a calculated amount of metal precursors upon stirring. Photo-deposition was performed for 4 h at room temperature, using a 300 W Xe lamp (Max-302, Asahi Spectra, Japan) as a light source. After photo-deposition, the BiVO₄ sample was filtered, repeatedly washed with de-ionized water, and finally dried at 40 °C in a vacuum oven for 12 h. For single silver reductive-deposition, a 2 g L⁻¹ AgNO₃ solution with a volume of 50 mL was used as the precursor solution, and the as-obtained sample after photo-deposition was denoted as BiVO₄-Ag. The single cobalt oxide oxidative-deposition was performed in a 50 mL solution mixed with 1.456 g L^{-1} Co(NO₃)₂ and 4 g L^{-1} NaIO₃, in which, Co(NO₃)₂ was used as a precursor, and NaIO₃

was used as an electron acceptor. The as-obtained sample after single oxidative-deposition was denoted as BiVO₄-Co₃O₄. The simultaneous silver reductive-deposition and cobalt oxide oxidative-deposition was performed by a two-step procedure. At first, the single cobalt oxide was deposited onto BiVO₄ in a mixed solution with 1.456 g L⁻¹ Co(NO₃)₂ and 4 g L⁻¹ NaIO₃. After 4 h of photo-deposition, the BiVO₄ sample was filtered, washed with de-ionized water, and then transferred into $2 \mathrm{~g~L}^{-1} \mathrm{~AgNO}_3$ solution. After photo-deposition of Ag, the BiVO₄ sample was filtered, repeatedly washed with de-ionized water, and finally dried at 40 °C in a vacuum oven for 12 h. The as-obtained sample after two-step deposition was denoted as BiVO₄-Ag/Co₃O₄.

2.2 Characterization

X-ray diffraction (XRD, Rigaku miniFlex-II desktop X-ray diffractometer, Cu-K α radiation with $\lambda = 0.154056$ nm) was used to determine crystallinity and the crystal structure of the as-fabricated BiVO₄ samples. The morphologies of the samples were observed using a scanning electron microscope (SEM, Hitachi Horiba S-4300) operated at 20 kV, and using a transmission electron microscope (TEM, JEOL. JEM-2010). The chemical states of Ag and Co on BiVO4 were determined using an X-ray photoelectron spectroscopy apparatus (PHI Quantera SXM). The energies of all spectra were shifted by correcting the C 1s peak to 284.6 eV for energy calibration. The room temperature photoluminescence (PL) of the powder samples was measured using a Hitachi F-7000 fluorescence spectrophotometer, using the 325 nm excitation of a Xenon lamp.

2.3 Dye photodegradation experiment

The photocatalytic efficiencies of all the prepared catalysts were evaluated by photodegrading rhodamine B (RhB) under simulated sunlight irradiation, which was sourced using a 300-W Xe lamp. In the degradation experiment, 100 mg of photocatalyst was suspended in 50 mL of aqueous solution with 10 mg L^{-1} RhB. Before irradiation, the RhB solution with a photocatalyst was stirred in the dark for 30 min to reach an adsorption/ desorption equilibrium between RhB and the photocatalyst. During irradiation, approximately 3 mL of suspensions were collected at given time intervals and centrifuged to remove the photocatalyst particles. After that, the absorption spectra of the remaining sample solutions were recorded on the UV-vis equipment. Photocatalytic degradation over each sample was evaluated by the temporal concentration of RhB, which was determined in terms of their standard concentration versus absorbance curves and the changes in intensity of the absorbance at the corresponding absorption band maximum of RhB (554 nm).

3. Results and discussion

3.1 Morphology and composition characterization

X-ray diffraction was used to determine crystallinity and the crystal structure of the as-fabricated BiVO₄ samples. According to the X-ray diffraction patterns of as-prepared BiVO4 powder NJC Paper

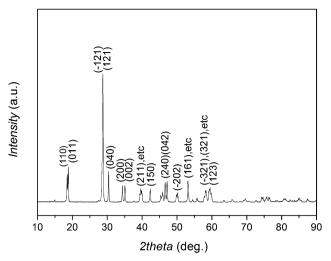


Fig. 1 X-ray diffraction pattern of as-prepared monoclinic sheelite BiVO₄ powder.

(Fig. 1), it is indicated that the as-prepared BiVO₄ is a monoclinic scheelite according to the standard JCPDS card no. 14-0688.

Fig. 2 shows the morphologies of bare BiVO₄ powder and BiVO₄ powder deposited with Ag and Co₃O₄ particles. It can be observed that the exposed facets of BiVO4 are mainly composed of two facets, which are denoted as {010} and {110} facets, respectively (Fig. 2a). After photo-reduction deposition in silver nitrate aqueous solution, Ag particles with diameters of around tens of nanometers were selectively deposited on the electronrich {010} facets of BiVO₄ (Fig. 2b). XPS was utilized to confirm the oxidation state of these Ag particles on BiVO₄. From Fig. 4a, Ag 3d peaks can be easily observed from the survey spectrum of

{110} (c) (d) (e) **(f)**

Fig. 2 Morphologies of as-prepared BiVO₄ powder (a), sample BiVO₄-Ag (b), sample $BiVO_4 - Co_3O_4$ (c and d) and sample $BiVO_4 - Ag/Co_3O_4$ (e and f). Scale bar = 500 nm

sample BiVO₄-Ag. The high revolution of the Ag 3d spectrum (Fig. 4b) shows that two peaks appeared at 368.2 and 374.2 eV are well corresponded with Ag 3d_{5/2} and Ag 3d_{3/2} binding energies, respectively. The splitting of the 3d doublet is 6.1 eV, indicating the metallic nature of silver. 25 Thus, it is proven that the photo-generated electrons are spatially separated onto the {010} facets of BiVO₄ under irradiation, and they are readily available for the reduction reaction of silver ions. It is expected that the photo-reduction of silver ions (eqn (1)) on {010} facets of BiVO₄ is accompanied by the elimination of photo-generated holes on {110} facets by water oxidation (eqn (2)), which can be expressed as follows:

$$Ag^{+} + e^{-} \rightarrow Ag \tag{1}$$

$$2H_2O + 4h^+ \rightarrow O_2 + 4H^+$$
 (2)

Fig. 2c and d show the morphologies of BiVO₄ powder after deposition of Co₃O₄ particles by the photo-oxidization deposition method in aqueous solution mixed with Co(NO₃)₂ and NaIO₃. As we expect, Co₃O₄ particles are selectively deposited on the {110} facets of BiVO₄. TEM images (Fig. 3a and b) confirm that the Co₃O₄ particle layer with a thickness of about 20 nm was formed on the {110} facets of BiVO₄ after photooxidization deposition. Fig. 3c shows the compositional scan profile (a blue line marked in the TEM image in Fig. 3b) of the sample BiVO₄-Co₃O₄. It clearly shows a strong Co signal at the edge of powder, further proving the selective deposition of Co species on {110} facets of BiVO₄. The high revolution of the Co 2p XPS spectrum of sample BiVO₄-Co₃O₄ shows a doublet containing a low energy band (Co 2p_{3/2}) and a high energy band

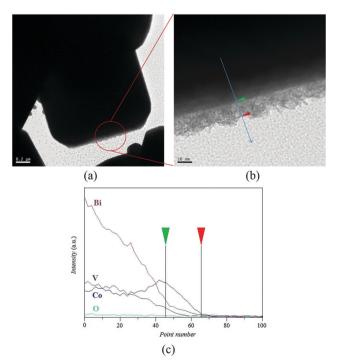
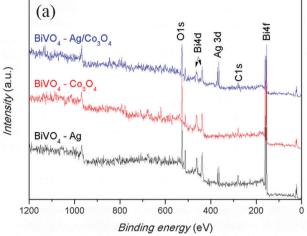
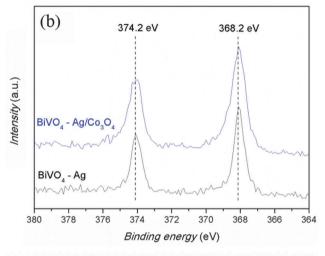




Fig. 3 TEM images of sample BiVO₄-Co₃O₄ (a and b), and the EDS line scan of Bi, V, Co and O elements on sample BiVO₄-Co₃O₄ along the blue line marked in (b) and (c).

Paper

(a) of using IO_3^- as s be described as e

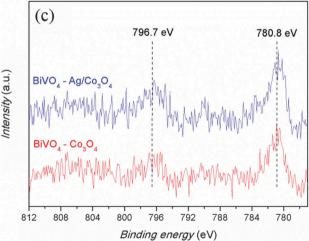


Fig. 4 XPS spectra of three kinds of photo-catalysts (BiVO $_4$ -Ag, BiVO $_4$ -Co $_3$ O $_4$ and BiVO $_4$ -Ag/Co $_3$ O $_4$): (a) survey spectra, and high resolution of (b) Ag 3d and (c) Co 2p spectra.

(Co $2p_{1/2}$) at 780.8 and 796.7 eV (Fig. 4c), respectively, indicating that the deposited cobalt species can be ascribed to Co_3O_4 . Accordingly, it is expected that Co^{2+} ions are oxidized into Co_3O_4 on the {110} facets of BiVO₄ crystals with the assistance

of using ${\rm IO_3}^-$ as sacrificial electron acceptors. The reactions can be described as eqn (3) and (4):

$$3\text{Co}^{2+} + 4\text{H}_2\text{O} + 2\text{h}^+ \rightarrow \text{Co}_3\text{O}_4 + 8\text{H}^+$$
 (3)

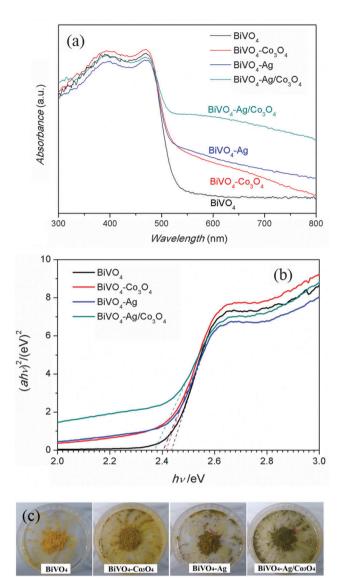
$$2IO_3^- + 10e^- + 12H^+ \rightarrow I_2 + 6H_2O$$
 (4)

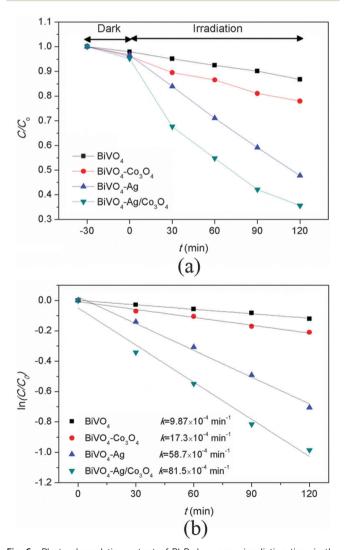
After the selective photo-deposition of Ag and Co₃O₄ particles on BiVO₄, we further investigated the photo-deposition of dual components (Ag and Co₃O₄) using a two-step procedure including photo-oxidation deposition and the following photoreduction deposition. Using this method, Ag and Co₃O₄ particles were deposited separately on the {010} and {110} facets of BiVO₄ powder, respectively (Fig. 2e and f). XPS was utilized to check the oxidation state of silver and cobalt on BiVO4 crystals after dual component deposition. It was observed that two typical Ag 3d peaks (Ag 3d_{5/2} and Ag 3d_{3/2}) of BiVO₄-Ag/Co₃O₄ are located at the same position with that of the BiVO₄-Ag sample (Fig. 4b), and the two typical Co 2p peaks (Co $2p_{1/2}$ and Co $2p_{3/2}$) of the BiVO₄-Ag/Co₃O₄ sample are also located at the same position with that of the BiVO₄-Co₃O₄ sample (Fig. 4c). It was demonstrated that the selective deposition of Ag and Co₃O₄ on two facets was successfully accomplished by the two-step photo-deposition procedure. Thus, the p-n junction and the m-s junction can be selectively constructed on hole and electron rich facets of BiVO₄. XPS is generally utilized to determine the content of single composition in the composite material. According to the XPS result in Fig. 4, the content of Ag and Co₃O₄ loaded over BiVO4 can be calculated to be 2.026 wt% and 0.137 wt%, respectively.

3.2 Optical absorption properties

Diffuse reflectance spectroscopy is an appropriate tool to depict the energy band structure feature of a semiconductor, which is relevant to the optical absorption properties considered as a pivotal factor in determining its photocatalytic activity. Fig. 5a shows the UV-vis diffuse reflectance spectra of the four kinds of BiVO₄ samples (BiVO₄, BiVO₄-Ag, BiVO₄-Co₃O₄, and BiVO₄-Ag/ Co₃O₄). The pure BiVO₄ sample presents intense absorption in the visible region until \sim 525 nm in addition to that in the UV light region. ^{27,28} For the monoclinic scheelite BiVO₄, the visible absorption band is designated to the transition from a valence band formed by Bi 6s or a hybrid orbital of Bi 6s and O 2p to a conduction band of V 3d.²⁸ The band gap (E_g) of the sample can be estimated according to formula $ah\nu = A(h\nu - E_g)^n$, ²⁸ where a, h, ν, A and E_g are the absorption coefficient, Planck's constant, the incident light frequency, a constant and the band gap energy, respectively. For BiVO₄, the value of n is 1/2, which indicates that BiVO₄ is a direct band gap material. From the plots of $(ah\nu)^2$ *versus* photon energy $(h\nu)$ shown in Fig. 5b, the band gap energy of BiVO₄ could be estimated to be 2.43 eV.²⁹

After the deposition of $\mathrm{Co_3O_4}$, the ability of light absorption is enhanced greatly. In accordance with that, the color of the sample changed from yellow of pure $\mathrm{BiVO_4}$ to grey-yellow of $\mathrm{BiVO_4}$ – $\mathrm{Co_3O_4}$ (Fig. 5c). This should be attributed to the broad absorption at 500–900 nm characteristic of the $\mathrm{Co_3O_4}$ phase. ³⁰ After the deposition of Ag, the absorbance edge of $\mathrm{BiVO_4}$ –Ag shows a slight red shift, and the absorption of $\mathrm{BiVO_4}$ in the




Fig. 5 UV-VIS DRS of samples BiVO₄, BiVO₄-Ag, BiVO₄-Co₃O₄, and BiVO₄-Ag/Co₃O₄ (a), plots of $(\alpha h \nu)^2$ vs. $h \nu$ (b), and photos of samples BiVO₄-Ag, BiVO₄-Ag, BiVO₄-Co₃O₄, and BiVO₄-Ag/Co₃O₄ (c).

range of 500-800 nm is intensified, both of it can be attributed to the surface plasmon resonance effect of silver nanoparticles.³¹ After the deposition of two components (Ag and Co₃O₄), the absorption of BiVO₄ in the range of 500-800 nm is further enhanced in comparison with BiVO4 samples deposited with a single Ag or single Co₃O₄ component, and this result agrees with the phenomenon that the color of sample BiVO₄-Ag/Co₃O₄ is darker than samples BiVO₄-Ag and BiVO₄-Co₃O₄. It must be emphasized that the photocatalytic activity can be greatly increased when the band gap is narrowed, which can facilitate the generation of electrons and holes and the excitation of an electron from the valence band to the conduction band.³² The estimated E_g of as-fabricated BiVO₄-Co₃O₄, BiVO₄-Ag and BiVO₄-Ag/Co₃O₄ from the intercept of the slopes to the plots were 2.41, 2.40 eV and 2.37 eV, respectively. The band gaps of these samples decreased compared to pure BiVO₄ (2.43 eV), and

the lower band gap implies a higher photocatalytic activity under visible light under irradiation in the presence of Ag and Co₃O₄.

3.3 Photocatalytic activity and the mechanism

To prove the contribution of Ag and Co₃O₄ to the photocatalytic activities of BiVO₄, and to understand the co-working mechanism of a multi-junction in a hybrid photocatalyst system, the photocatalytic activities of samples BiVO₄, BiVO₄–Ag, BiVO₄–Co₃O₄, and BiVO₄–Ag/Co₃O₄ were firstly measured in the liquid phase reaction under the simulated solar light irradiation. The decomposition of RhB in the aqueous solution was chosen as the photoreaction probe. As shown in Fig. 6, the adsorption of RhB over all samples in dark condition could be neglected. After 120 min of the simulated solar light irradiation, the degradation extent of RhB dye with the assistance of pure BiVO₄ can only reach around 10%, indicating that BiVO₄ only achieves low activity for degradation of RhB. In the presence of BiVO₄ powders deposited with a single component (Ag or Co₃O₄),

Fig. 6 Photo-degradation extent of RhB dye *versus* irradiation time in the presence of samples BiVO₄, BiVO₄–Co₃O₄, BiVO₄–Ag, BiVO₄–Ag/Co₃O₄ (a), and kinetic curves of the photo-degradation of RhB dye under irradiation (b).

Paper

the degradation extents of RhB dye increase to 20% (sample BiVO₄–Co₃O₄) and 52% (sample BiVO₄–Ag), respectively. It indicates that the single Ag or Co₃O₄ component on BiVO₄ powder can increase

the single Ag or Co_3O_4 component on BiVO₄ powder can increase photocatalytic activities. In the presence of sample BiVO₄–Ag/Co₃O₄, the degradation extent of RhB is further increased to 65%, proving that a better performance can be achieved by depositing the two components simultaneously.

If the photo-degradation of RhB is considered as a pseudofirst-order reaction, its photocatalytic reaction kinetics can be expressed as follows: $\ln(C/C_0) = -kt$, where C is the concentration of the RhB at time t, C_0 is the initial concentration of the RhB solution, and the slope k is the apparent reaction rate constant. Fig. 6b represents the photodegradation curves of RhB in the form of $ln(C_0/C)$ as a function of irradiation time. It can be found that the apparent reaction rate constant of sample $BiVO_4$ for RhB photo-degradation is 9.87 \times 10⁻⁴ min⁻¹. After depositing the two components (Ag and Co₃O₄) simultaneously, the apparent reaction rate constant of sample BiVO₄-Ag/Co₃O₄ for RhB photo-degradation increases to $81.5 \times 10^{-4} \text{ min}^{-1}$, which is almost ten times that of bare BiVO₄. It is proven that the deposition of the two components can significantly improve the photoactivity of the photocatalyst. It should be noticed that the apparent reaction rate constant of sample BiVO₄-Ag/ Co₃O₄ is almost equal to the sum of that of samples BiVO₄-Ag and $BiVO_4$ - Co_3O_4 (k_{BiVO_4 - Ag/Co_2O_4 $\approx k_{BiVO_4$ - $Ag} + k_{BiVO_4$ - Co_2O_4), indicating that there is no synergetic effect between the p-n junction and the metal-semiconductor junction in the Co₃O₄/ BiVO₄/Ag system.

PL emission spectra are often used to examine the efficiency of charge carrier trapping, immigration and transfer, as well as to understand the fate of electron/hole pairs in semiconductor particles. Fig. 7 shows the room temperature PL emission spectra of samples BiVO₄, BiVO₄–Co₃O₄, BiVO₄–Ag, and BiVO₄–Ag/Co₃O₄. The PL peak of as-fabricated BiVO₄ powder was observed at around 540 nm, and it corresponds to the recombination of the hole formed in the O 2p band and the electron in the V 3d band. In comparison with bare BiVO₄, the PL peak is reduced

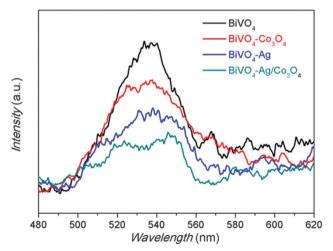
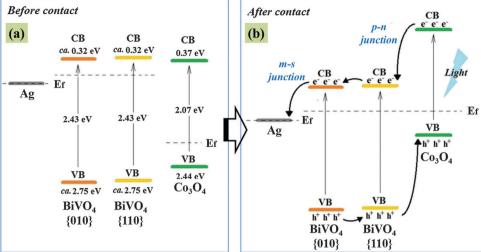


Fig. 7 Room temperature PL emission spectra of samples $BiVO_4$, $BiVO_4$ – Co_3O_4 , $BiVO_4$ –Ag, and $BiVO_4$ –Ag/ Co_3O_4 .

after depositing a single $\mathrm{Co_3O_4}$ or single Ag component, indicating that the existence of the single component can help to reduce the recombination of electrons and holes. The PL peak of the sample $\mathrm{BiVO_4}\text{-}\mathrm{Ag/Co_3O_4}$ is further reduced after depositing Ag and $\mathrm{Co_3O_4}$ simultaneously. This result indicates that the recombination of photogenerated charge carriers is greatly inhibited, and photo-activity of the phocatalyst will be enhanced greatly after depositing Ag and $\mathrm{Co_3O_4}$ simultaneously.

Based on these results, the charge separation process of $Ag/BiVO_4/Co_3O_4$ heterogeneous structures can be proposed as Fig. 8. The band gap of $BiVO_4$ was evaluated to be 2.43 eV from the UV-vis spectrum. Therefore we presume the corresponding conduction band (E_{CB}) and valence band (E_{VB}) positions of $BiVO_4$ at the point of zero charge through the following equations:³³


$$E_{\rm CB} = x - E_0 - \frac{1}{2}E_{\rm g} \tag{5}$$

$$x = \frac{1}{2}(A_{\rm f} + I_1) \tag{6}$$

where x is the bulk electronegativity of the compound, A_f and I_1 are the atomic electron affinity and the first ionization potential, respectively. E_0 is the energy of free electrons on the hydrogen scale (about 4.5 eV), and E_g is the band gap energy of the semiconductor. The position of the valence band edge can be determined by the equation of $E_{VB} = E_{CB} + E_{g}$. The calculation result shows that the bottom of the conduction band of BiVO₄ is around 0.32 eV versus the normal hydrogen electrode (NHE), while the top of the valence band is around 2.75 eV. Generally speaking, the conduction band potential of an n-type semiconductor is more negative (ca. 0.1-0.2 V) than the flat-band potentials, 33 so the Fermi level of metallic Ag $(E_f = 0.69 \text{ V } \text{vs. NHE})$ is much lower than that of BiVO4. ³⁴ On the {010} facet of BiVO₄, when Ag and BiVO₄ are in contact, electrons in BiVO₄ will transfer to the Ag particles to equilibrate the Fermi levels, and a Schottky barrier forms between Ag and BiVO₄. Furthermore, it was widely reported that Co₃O₄ is a kind of p-type semi-conductor with a conduction band edge and a valence band edge of Co₃O₄ of 0.37 eV and 2.44 eV vs. NHE. Before contact of p-type Co₃O₄ with n-type BiVO₄, the conduction band edge of p-type Co₃O₄ is lower than that of n-type BiVO₄, and the Fermi level of Co₃O₄ is also lower than that of BiVO₄, as shown in Fig. 8a. After the p-type Co₃O₄ nanoparticles are tightly assembled on the hole-rich facet {110} of n-type BiVO₄ nanocrystals, the Fermi level of Co₃O₄ is increased up, while the Fermi level of BiVO₄ is lowered until an equilibrium state is formed as shown in Fig. 8b. Meanwhile, with increasing and/or lowering the Fermi level, the whole energy band of Co₃O₄ is increased while that of BiVO₄ is lowered, and as a result, the conduction band edge of p-type Co₃O₄ is higher than that of n-type BiVO₄, leading to the formation of a p-n junction at the interface between Co₃O₄ and BiVO₄ crystals.

In the Ag/BiVO₄/Co₃O₄ system, the electrons and holes transfer separately to $\{010\}$ and $\{110\}$ facets of BiVO₄ for the potential difference between the two facets under irradiation. On the electron-rich $\{010\}$ facet, electrons can be easily injected

NJC Paper

A schematic on the charge transfer processes of the Ag/BiVO₄/Co₃O₄ hybrid photocatalyst

into the Fermi level of Ag. The metallic silver nanoparticles functioned as an electron sink to accept the photo-generated electrons from the excited semiconductor, thereby facilitating dioxygen reduction.³⁵ On the hole-rich {110} facet, the photogenerated holes on the valence band of n-type BiVO4 can be promptly migrated to the valence band of p-type Co₃O₄, and the photo-generated electrons on the conduction band of p-type Co₃O₄ can be transferred to the conduction band of n-type BiVO₄. Such a migration of photo-generated carriers can be promoted by the internally formed electric field. Therefore, the photo-generated electrons and holes of n-type BiVO₄ can be separated effectively by the p-n junctions formed between the p-type Co₃O₄ and the n-type BiVO₄ interface, and the recombination of electron-hole pairs can be substantially reduced. As a result, Ag/BiVO₄/Co₃O₄ had a quicker charge separation and a slower charge recombination process than the single or two component catalyst system. The combination of the two junctions in the Ag/BiVO₄/Co₃O₄ system results in additional effect for improving photo-activity.

4. Conclusion

A novel ternary Ag/BiVO₄/Co₃O₄ hybrid photocatalyst was designed by the photo-deposition method. In this hybrid photocatalyst, a metal-semiconductor junction and a p-n junction were separately constructed over {010} facets and {110} facets of BiVO₄, which are electron-rich and hole-rich facets, respectively. The Ag/BiVO₄/Co₃O₄ system exhibits enhanced photocatalytic activity for rhodamine B degradation, which is over 8 times that of bare BiVO₄ under irradiation. The apparent reaction rate constant of sample BiVO₄-Ag/Co₃O₄ is almost equal to the sum of that of samples BiVO₄-Ag and BiVO₄-Co₃O₄. It is proven that the combination of the two junctions further promotes the charge transferring across the interface, and results in an additional effect of the two single junctions for improving photo-activity. This research provides a deep insight about the co-working mechanism between two heterojunctions, and

it will propose a new concept for designing a highly efficient photocatalyst system.

Acknowledgements

This research was supported by the Young Scientist Exchange Program between The Republic of Korea and the People's Republic of China, and The National Natural Science Foundation of China (No. 41476068).

References

- 1 J. M. C. Robertson, P. K. J. Robertson and L. A. Lawton, J. Photochem. Photobiol., A, 2005, 175, 51-56.
- 2 H. A. Foster, I. B. Ditta, S. Varghese and A. Steele, Appl. Microbiol. Biotechnol., 2011, 90, 1847-1868.
- 3 X. Wang, X. Hu, H. Wang and C. Hu, Water Res., 2012, 46, 1225-1232.
- 4 J. Oh, D. E. Salcedo, C. A. Medriano and S. Kim, J. Environ. Sci., 2014, 26, 1238-1242.
- 5 Y. Mao, X. Wang, H. Yang, H. Wang and Y. F. Xie, Chemosphere, 2014, 117, 515-520.
- 6 C. Poepping, S. E. Beck, H. Wright and K. G. Linden, Water Res., 2014, 56, 181–189.
- 7 E. Ortega-Gómez, P. Fernández-Ibáñez, M. M. Ballesteros Martín, M. I. Polo-López, B. Esteban García and J. A. Sánchez Pérez, Water Res., 2012, 46, 6154-6162.
- 8 T. Matsunaga, R. Tomoda, T. Nakajima and H. Wake, FEMS Microbiol. Lett., 1985, 29, 211-214.
- 9 P. Xiong and J. Hu, Water Res., 2013, 47, 4547-4555.
- 10 L. Zhang, H. Wang, Z. Chen, P. K. Wong and J. Liu, Appl. Catal., B, 2011, 106, 1-13.
- 11 J. Cao, B. Luo, H. Lin and S. Chen, J. Hazard. Mater., 2011, 190, 700-706.
- 12 S. J. Hong, S. Lee, J. S. Jang and J. S. Lee, Energy Environ. Sci., 2011, 4, 1781-1787.

- 13 D. K. Zhong, S. Choi and D. R. Gamelin, *J. Am. Chem. Soc.*, 2011, **133**, 18370–18377.
- 14 R. Saito, Y. Miseki and K. Sayama, Chem. Commun., 2012, 48, 3833–3835.
- 15 H. Fan, T. Jiang, H. Li, D. Wang, L. Wang, J. Zhai, D. He, P. Wang and T. Xie, J. Phys. Chem. C, 2012, 116, 2425–2430.
- 16 S. W. Cao, Z. Yin, J. Barber, F. Y. C. Boey, S. C. J. Loo and C. Xue, ACS Appl. Mater. Interfaces, 2012, 4, 418–423.
- 17 H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu and X. Wang, *Chem. Soc. Rev.*, 2014, **435**, 234–5244.
- 18 W. Wang, X. Huang, S. Wu, Y. Zhou, L. Wang, H. Shi, Y. Liang and B. Zou, *Appl. Catal.*, *B*, 2013, **134–135**, 293–301.
- 19 W. Wang, J. Wang, Z. Wang, X. Wei, L. Liu, Q. Ren, W. Gao, Y. Liang and H. Shi, *Dalton Trans.*, 2014, **43**, 6735–6743.
- 20 Z. He, Y. Shi, C. Gao, L. Wen, J. Chen and S. Song, *J. Phys. Chem. C*, 2014, **118**, 389–398.
- 21 Y. Lv, K. Huang, W. Zhang, B. Yang, F. Chi, S. Ran and X. Liu, *Ceram. Int.*, 2014, 40, 8087–8092.
- 22 X. An, H. Liu, J. Qu, S. J. A. Moniz and J. Tang, *New J. Chem.*, 2015, **39**, 314–320.
- 23 R. Li, F. Zhang, D. Wang, J. Yang, M. Li, J. Zhu, X. Zhou, H. Han and C. Li, *Nat. Commun.*, 2013, 4, 1432.

- 24 L. Chen, R. Huang, Y. J. Ma, S. L. Luo, C. T. Au and S. F. Yin, RSC Adv., 2013, 3, 24354–24361.
- 25 P. Zhang, C. Shao, Z. Zhang, M. Zhang, J. Mu, Z. Guo and Y. Liu, *Nanoscale*, 2011, 3, 3357–3363.
- 26 J. Xu, P. Gao and T. S. Zhao, *Energy Environ. Sci.*, 2012, 5, 5333-5339.
- 27 A. Kudo, I. Tsuji and H. Kato, Chem. Commun., 2002, 1958.
- 28 Y. Lu, Y. S. Luo, H. M. Xiao and S. Y. Fu, *CrystEngComm*, 2014, **16**, 6059–6065.
- 29 Z. He, Y. Shi, C. Gao, L. Wen, J. Chen and S. Song, *J. Phys. Chem. C*, 2014, **118**, 389–398.
- 30 J. Wang and F. E. Osterloh, *J. Mater. Chem. A*, 2014, 2, 9405–9411.
- 31 A. Y. Booshehri, S. C. K. Goh, J. Hong, R. Jiang and R. Xu, *J. Mater. Chem. A*, 2014, 2, 6209–6217.
- 32 Z. Y. Bian, Y. Q. Zhu, J. X. Zhang, A. Z. Ding and H. Wang, *Chemosphere*, 2014, **117**, 527–531.
- 33 Y. Hu, D. Li, Y. Zheng, W. Chen, Y. He, Y. Shao, X. Fu and G. Xiao, *Appl. Catal.*, *B*, 2011, **104**, 30–36.
- 34 W. Fan, S. Jewell, Y. She and M. K. H. Leung, *Phys. Chem. Chem. Phys.*, 2014, **16**, 676.
- 35 Y. Yang, J. Wen, J. Wei, R. Xiong, J. Shi and C. Pan, ACS Appl. Mater. Interfaces, 2013, 5, 6201–6207.